If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2=1323
We move all terms to the left:
3x^2-(1323)=0
a = 3; b = 0; c = -1323;
Δ = b2-4ac
Δ = 02-4·3·(-1323)
Δ = 15876
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{15876}=126$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-126}{2*3}=\frac{-126}{6} =-21 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+126}{2*3}=\frac{126}{6} =21 $
| 8m-20=91 | | 16x2+10x-27=-6x+5 | | 10x3=-33 | | 8=k-12/4 | | 155+137+25+x=360 | | Y=72-6x | | 148+x+x=180 | | -5+3(3n-7)=-26+9n | | 2(3x+6)=x | | 15x-13-5x=17 | | 2x−7+19=6x−4x+12 | | 3d-2d=-1 | | H=4+31t-16t | | 8/7x=-10/3 | | -6x+7x+35=21 | | 5x=122.5 | | 3-5(2x-8)=-25 | | 2-3x=-4x-8 | | 7+5m=11.8+3m | | -3(4-3x)=9x+1 | | 5x+3x+128=180 | | 14m-7-6m-16=1+4m | | 3x-2x+4=2+x+x+2 | | 2x+18=4x+6 | | 2x-2=x+8-4 | | 7x+5–4x–165(1–4x)+2x–40=34 | | -6x-36+2=-6x-3 | | 14x-5=4x+55 | | |7x-35|+18=18 | | x^+2x+5=0 | | x-2=-2x+1 | | (3x)+(2x+40)=100 |